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A Data-Driven Method Towards Minimizing
Collision Severity for Highly Automated Vehicles
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Abstract—The deployment of autonomous vehicles on public
roads calls for the development of methods that are reliably able
to mitigate injury severity in case of unavoidable collisions. This
study proposes a data-driven motion planning method capable of
minimizing injury severity for vehicle occupants in unavoidable
collisions. The method is based on establishing a metric that
models the relationship between impact location and injury
severity using real accident data, and subsequently including it in
the cost function of a motion planning framework. The vehicle
dynamics and associated constraints are considered through a
precomputed trajectory library, which is generated by solving an
optimal control problem. This allows for efficient computation as
well as an accurate representation of the vehicle. The proposed
motion planning approach is evaluated by simulation, and it
is shown that the trajectory associated with the minimum cost
mitigates the collision severity for occupants of passenger vehicles
involved in the collision.

Index Terms—Motion planning, collision severity, data-driven,
impact location, injury severity, trajectory library, occupant
safety, optimal control.

I. INTRODUCTION

THE automotive industry is greatly investing in the deploy-
ment of autonomous vehicles on public roads [1]; however,

a major challenge of this deployment is ensuring vehicle safety
in critical traffic situations. In the literature, various motion
planning techniques have been developed to improve the safety
of autonomous vehicles by providing contingency maneuvers.
These methods either bring the vehicle to a safe stop [2],
[3], [4], [5] or provide one or several parallel trajectories
dealing with multiple outcomes [6], [7]. However, the best
practice techniques applied in their implementation cannot
always ensure an avoidance maneuver, for instance, due to
limitations in vehicle modeling or the perception systems [8].
It is thus not surprising that the testing of autonomous vehicles
on public roads has to date involved several accidents [9].
In fact, even with the most advanced autonomous vehicles
developed by leading automotive manufacturers, accidents still
occur [4]. Therefore, unavoidable collision situations are likely
to exist and require the attention of vehicle manufacturers in
the foreseeable future.

Manuscript received June 04, 2020; revised November 06, 2020; accepted
February 16, 2021. This work is supported by ECSEL PRYSTINE project
with grant agreement 783190. Lars Svensson is funded by AutoDrive project,
H2020-ECSEL. (corresponding author: Masoumeh Parseh).

M. Parseh, F. Asplund, L. Svensson and M. Törngren are with the
Mechatronics and Embedded Control Systems Division, Department of
Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden.
Email: {mparseh, fasplund, larsvens, martint}@kth.se.

W. Sinz and E. Tomasch are with Vehicle Safety Institute, Graz University of
Technology, Graz, Austria. Email: {ernst.tomasch,wolfgang.sinz}@tugraz.at.

Motion planning in scenarios where a collision cannot
be avoided has gained attention only recently. The authors
of [10] developed a model predictive control (MPC)-based
motion planner that outputs a trajectory with the lowest crash
severity if avoidance is not possible. The crash severity is
part of the formulation of the MPC cost function and is
based on relative speed, relative heading angle and mass
ratio between the vehicles. In [11], a crash severity map was
developed by finite elements (FEM) simulations that aimed at
identifying a crash configuration minimizing the crash severity.
The method searches for a maneuver that leads to this crash
configuration, which is determined by lateral offset and the
relative heading angle. The severity of a crash in [11] is based
on the deformation of nodes in the passenger compartment.

The main contribution of this paper is a data-driven method
that estimates and utilizes collision severity in scenarios where
a collision cannot be avoided. This method can initially rely
on data sets that disregard heterogeneity (variations in vehicle
types and collision environment). However, the method can be
extended and improved by refining these data sets over time
without affecting the original proposal. We thus contribute
a method with the aim of avoiding the simplifications and
assumptions that might be required by deductive approaches,
both during design and run-time. We show the applicability
of the method using real accident data by coupling it to a
trajectory library planning approach that enables an accurate
representation of the vehicle dynamics in aggressive maneuvers
as we proposed in [12]. Our method provides improved
accuracy in terms of collision severity representation, which
enables the planner to further minimize the severity of the
accident.

The rest of the paper is organized as follows. Section II
presents related work in two research fields, i.e., accident data
analysis and motion planning in critical scenarios. Section III
characterizes the problem to be solved in terms of a choice
between several feasible trajectories. Sections IV, V and VI
together present a novel solution to the problem statement,
with each section describing one aspect. In Section IV, we
analyze accident data and define a data-driven metric that
maps impact location to accident severity. In Section V, we
introduce the trajectory library motion planning framework, in
which the severity metric from Section IV can be included as
a cost term. The integrated method for severity minimization
motion planning is described in Section VI. The proposed
solution is verified through simulations in Section VII. The
paper concludes with discussion, and conclusions and future
work, in sections VIII and IX, respectively.
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II. RELATED WORK

Planning a trajectory for a vehicle in unavoidable collision
scenarios involves identifying the factors that contribute to
the injury severity and understanding the techniques and
requirements of motion planning in such critical situations.
Below, we discuss the relevant work related to these concerns.

A. Accident Data and Analysis

Data from road vehicle accidents has been gathered and
analyzed for a long time and for many different purposes.
For example, researchers have studied collisions in order to
build algorithms for injury severity predictions since the 1990s.
Malliaris [13] identified more than twenty crash predictors that
can estimate the likelihood of collisions leading to fatalities or
at least one injury severity of the Maximum Abbreviated Injury
Scale (MAIS) 3+ [14], [15] and one injury severity of MAIS
+2 in highway accidents. Using the same accident data sources,
Kononen et al. developed a model to predict the probability
that a vehicle involved in a collision contains occupants with
serious injuries [16]. The inputs for that model were delta-v
(total change in the vehicle’s velocity), direction of impact
(front, left, right and rear), vehicle type, single or multiple
impacts, seat belt use, age and gender. The conclusions were
that delta-v, seat belt use and direction of impact influence the
injury severity the most; left impacts are associated with the
highest risk, followed by right, front and rear impacts [16].
Studies based on other accident data sources have arrived at the
same result [17], [18], [19]. As an example, Lubbe et al. [18]
plotted the risk of severe injury against delta-v for different
accident types. They identified that as delta-v increases, a belted,
single near-side collision has higher severity in comparison to
a belted, single front or rear collision.

Similarly, Nishimoto et al. [19] identified the most important
risk factors as delta-v, vehicle impact location, seat belt use,
single/multiple impact, vehicle size and the age and seating
positions of occupants. Furthermore, the injury risk was highest
for the near side, followed by the far side, front and rear [19].
Huang et al. [20] performed an analysis to investigate the
relationship between the point of impact and injury severity,
and the results showed that the front passenger side and driver
side impose higher risk to the driver in comparison to the rear
passenger sides and rear corners of the vehicle.

Nevertheless, it should be noted that many factors risk
confounding accident analysis, meaning that less conservative
conclusions are associated with large uncertainties. As an exam-
ple, severity data is often based on subjective assessments from
police reports [21], which can differ significantly from objective
measures of severity [22]. Similarly, behavioral differences
between drivers and the under-reporting of less severe injuries
can substantially skew conclusions from studies of accidents
[21]. The existence of unobserved heterogeneity (variations
in the effect of variables across the sample population that
are unknown to the analyst) is especially concerning [23].
Although automated vehicles might mitigate much of this
problem in regard to driver behavior, it will continue to
exist for the foreseeable future due to the large heterogeneity
of environmental factors and vehicle designs [23]. In fact,

the problem will most likely persist at least until significant
improvements in the sensors carried by automated vehicles
enable them to provide data far surpassing what is available
today [21].

In other words, it appears that we are limited to conservative
conclusions based partly on logical reasoning when differen-
tiating between trajectories for a highly automated vehicle in
an inevitable collision scenario. As an example, the design of
road vehicles in regard to absorbing the energy from collisions
means that front and rear collisions are likely to be less severe
than side collisions [16], [17], [18], [19], [24].

B. Motion Planning in Critical Situations

Motion planning in critical scenarios requires the vehicle
to operate close to its physical limitations under tight time
constraints. The motion planning algorithm needs an accurate
representation of the vehicle to enable full utilization of its
motion capability while ensuring that the real vehicle is able
to track the planned trajectory. In addition, the execution time
must be sufficiently short so that the vehicle can react to a
dynamically changing environment [25].

These combined requirements make motion planning in criti-
cal situations a challenging problem. However, there have been
several research efforts presenting real-time motion planning al-
gorithms capable of planning motions approaching the physical
limits by utilizing methods from numerical optimization [26],
[27], [28]. With this approach, the motion planning problem
is formulated as an optimal control problem that is solved
online, where the vehicle dynamics and desired behavior are
encoded as costs and constraints [29]. The optimization-based
approach is advantageous for planning aggressive motions, as
it scales comparatively well with the model complexity and
therefore allows an accurate representation of the vehicle. It
also allows for explicit encoding of the dynamic constraints of
the vehicle [25]. However, since the optimization problem is
solved online, the problem to be solved at each iteration needs
to be formulated in a way that allows efficient solving, e.g. as
a quadratic program [10], [26], [27]. The cost function of a
quadratic program must be a quadratic function of states and
controls. This requirement places restrictions on what desired
behaviors can be expressed.

In the context of severity minimization motion planning,
optimization-based methods prohibit a detailed representation
of how the impact location affects the severity of the crash. For
example, in [10], the crash direction is included in the severity
index, represented by the relative heading angle between the
vehicles, but the distinction between different impact locations
is not included.

Sampling-based motion planners are generally less restrictive
in this regard. The trajectory roll-out family of algorithms build
on the principle of rolling out a set of candidate trajectories
starting at the current vehicle state and selecting the optimal
candidate using a cost function that can be formulated with very
few restrictions. The practicality of the method has been proven
in several studies [30], [31]. The efficiency of the method hinges
on a fast method to generate the candidate trajectories. Werling
et al. [31] proposed using quintic and quartic polynomials to
represent lateral and longitudinal motion, and showed that this
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constitutes minimum jerk trajectories for the vehicle. Such
trajectories can be computed efficiently, but are not suitable
for dynamic maneuvers [2]. Hence, for trajectory roll-out
methods there is a trade-off between computational efficiency
and vehicle model accuracy.

One way to circumvent this trade-off is to move computations
offline. By precomputing a library of trajectories using an
accurate model, the online computation is reduced to selecting
the optimal trajectory in the library. This approach has
been successfully employed in many robotic applications, for
example, the Mars exploration rover [32], evasive maneuvers
for autonomous helicopters [33] and automated vehicles [2].

III. PROBLEM STATEMENT

We tackle the problem of reducing post-impact injury
severity for passenger car occupants by controlling the vehicle
maneuvers prior to an unavoidable collision. Such a severity
minimization motion planning problem can be expressed as
the following optimization problem:

minimize accident severity
subject to vehicle dynamic constraints,

initial condition.

The optimal trajectory is the sequence of states, which
minimizes the severity of the resulting accident while adhering
to the dynamic limitations of the vehicle. As stated in Section
II.A, the impact location is strongly correlated to the severity
of an accident and should therefore be included in the cost
function.

Due to the limitations of optimization-based methods in
terms of cost function expressivity, as described in Section II.B,
using such a method requires severe simplifications that may
in turn lead to a loss of optimality with respect to the original
problem. Therefore, we apply a trajectory library approach [2]
to tackle the severity minimization problem.

The question to be answered is how the ego vehicle should
select and execute a trajectory from the library to achieve
minimum collision severity. To answer this question, we
elaborate on how to establish the relationship between the
impact location and collision severity in Section IV, and
formulate an optimal control problem to generate the trajectory
library in Section V. Finally, we construct a method for selecting
a trajectory that minimizes the collision severity in Section VI.

IV. COLLISION SEVERITY ANALYSIS

We analyzed real accident data to understand the relationship
between the impact location and collision severity. In the
following subsections, we introduce the accident data source,
the associated filter criteria, and vehicle impact location
classification we have used. Consequently, we estimate the
risk associated with collisions with different vehicle locations.

A. Data Source and Filter Criteria

Studies show that collisions at intersections constitute more
than 50% of all accidents, and their number has increased faster
than other types of accidents over the years [35]. Furthermore,

Fig. 1. General deformation area at first collision.
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Fig. 3. Collision location of passenger cars-side impacted.

the National Highway Traffic Safety Administration (NHTSA)
issued a pre-crash scenario typology that provides information
on different crash types and their frequencies [36]. Based on
this document, in a pre-crash scenario between two vehicles
with at least one light vehicle (passenger car), the vehicle(s)
turning at non-signalized junctions scenario has the second
highest frequency following the lead vehicle stopping scenario.
Therefore, we applied the following filter criteria to the accident
data: only accidents at junctions are considered, at least one
passenger car was involved in the accident, and only passenger
cars against other vehicles are considered. Accidents with
pedestrians, trains and unspecified participants are removed.
The accident data used in this study is sourced from the
Initiative for the Global harmonization of Accident Data
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Table I
RISK ESTIMATE-ODDS RATIO

Collision Location Description Fatal Severe Minor No Injury Unknown Total ORFS
B0 Rear compartment 2 1 10 44 1 58 0.61
D0 Distributed across entire side 4 4 13 5 1 27 1.30
F0 Front compartment 7 25 72 138 0 242 0.91
L0 1/4 from left side 0 0 6 2 0 8 0.0
L1 1/3 from left side 0 0 1 1 0 2 0.0
P0 All of passenger compartment 24 11 52 33 5 125 1.54
P1 Passenger compartment-front seat 1 3 17 27 1 49 0.48
P2 Passenger compartment-rear seat 1 0 10 11 0 22 0.20
R0 1/4 from right side 0 0 6 5 0 11 0.0
R1 1/3 from right side 0 0 1 1 0 2 0.0
Y0 Front and passenger compartment 10 15 33 20 6 84 1.71
Y1 Front compartment and front seat 7 6 32 35 0 80 0.83
Z0 Rear and passenger compartment 9 6 31 17 7 70 1.01
Z1 Rear compartment and rear seat 2 6 17 19 2 46 0.98

(IGLAD) [37].

B. Collision Characteristics and Classification

Collision Deformation Classification (CDC) is a classification
system defined by SAE J224 [38] that addresses the extent of
damage to vehicles involved in accidents on highways. The
CDC code consists of seven digits, each describing an aspect
of vehicle damage. The code includes the clock direction of
principal direction of force as two digits, area of deformation,
specific longitudinal or lateral location of deformation, specific
vertical location of deformation, type of damage distribution
and maximum extent of penetration.

In addition, traffic accidents can cause fatal or severe injuries.
In this study, we analyzed the accident data to establish
a relationship between the impact location and the MAIS
injury severity scale [15]. We initially investigated the general
area of deformation (front, side and rear) against different
injury severity levels (fatal, severe and minor). The results are
presented in Fig. (1). The highest relative share of fatal injuries
is associated with the left- and right-side impact locations. The
smallest share of fatal injuries is associated with the rear of
the vehicle.

To further study this relationship in detail, we investigated
collisions involving side impacts separately. The longitudinal
location of the vehicle body was divided into smaller parts, as
shown in Fig. (2). The distribution of fatal, severe and minor
injuries for a specific longitudinal impact location is visualized
in Fig. (3). As seen in this graph, the complete passenger
compartment (P0) is associated with the highest distribution
of fatal injuries.

C. Risk Estimation

The Odds Ratio (OR) is used as a risk estimation metric to
classify collisions according to their associated injury severity.
OR is defined as the ratio of the probability of event A occurring
to the probability of event A not occurring [39]. This can be
estimated by the number of times the event of interest occurs
divided by the number of times it does not occur. For instance,
if we define the event of interest as the occurrence of fatal
injuries, a nonfatal injury is equivalent to the event of interest
not occurring. Odds ratio calculations within the context of this
paper are presented in Appendix A through a simple example.

For each collision location, as shown in Fig. (3), the
associated number of fatal, severe and minor injuries and
cases of no and unknown injuries are presented in Table I. In
Table I, the Odds Ratio for Fatal and Severe (ORFS) represents
cases in which the event of interest is both fatal and caused
severe injuries. The relationship between the impact location
and injury severity for such cases is of the most interest, as we
consider minor injuries acceptable in comparison. Therefore,
ORFS is considered as a risk metric to rank collisions based
on the impacted location. Consequently, the highest ORFS
value indicates the worst collision location. The values for
unknown and no injury in Table I are not considered in the
OR calculations.

V. TRAJECTORY LIBRARY

To stay as close as possible to the original problem while
maintaining an accurate model, we apply a trajectory library
approach to generate feasible trajectories for the ego vehicle.
These trajectories are created by solving an optimal control
problem numerically.

The optimal control problem that generates the trajectory
library is formulated as Eq. (1) and takes the ego vehicle from
an initial position to a fine-grained grid of final positions. The
cost function minimizes the Euclidean distance between the
current position and the goal position at each time step and
the velocity at the final position. The vehicle dynamics are
included as the constrains of the optimization problem.

minimize
x(.),u(.)

∫ tf

0

||Sg − S(t)||22dt+ vx(tf )

subject to ẋ(t) = f(x(t),u(t)),

G(x(t),u(t)) ≤ 0,

x(0) = x0,

x(tf ) = xT .

(1)

In Eq. (1), x(t) is the state vector, u(t) is the control vector
and f(x(t),u(t)) is a set of ordinary differential equations
that represents the dynamics of the ego vehicle. The initial
and final states of the vehicle are denoted as x0 and xT ,
respectively. The current position and the goal position of the
vehicle in the global coordinate system are denoted as S(t) and
Sg, respectively. The path constraints of the optimization are
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Fig. 4. Trajectory library for different initial velocities (vx). X(t) and Y (t)
are global coordinates of center of gravity of the ego vehicle.

defined by the term G(x(t),u(t)), which contains constraints
on the state and control variables of the vehicle such as limits
on vehicle dynamics. Furthermore, tf in Eq. (1) represents the
final time (defined as an optimization variable), and vx(tf ) is
the longitudinal velocity of the ego vehicle at the goal position.
The details of the vehicle and tire modeling are presented in
Appendix B.

The optimization problem is solved with the CasADi Opti
functionality [40]. By using the direct multiple shooting method
[41], the optimal control problem in Eq. (1) is discretized in
time and transformed into a Nonlinear Programming Problem
(NLP). The resulting NLP problem is then solved numerically
by the interior point method with IPOPT [42]. Furthermore,
the direct multiple shooting is capable of dealing with strong
nonlinear optimization problems [43] and is cost efficient in
terms of computation time [44].

Therefore, a trajectory library is created for a range of initial
velocities. All trajectories are derived by combining braking and
steering, enforced as a hard optimization constraint through the
term G(x(t),u(t)) in Eq. (1). During the run-time operation
of the ego vehicle, a subset of trajectories from the library is
chosen based on the vehicle’s current velocity. An example of
this trajectory library for different initial velocities is presented
in Fig. (4), with the red markers representing the reachable
goal positions for the vehicle.

VI. COLLISION SEVERITY MINIMIZATION MOTION
PLANNING

Thus far, we have introduced a metric that maps collision
severity and impact location and generated a trajectory library.
In this section, we present how this metric is used in the cost
function of a motion planning framework. We also introduce
our assumptions and our approach to detecting a collision and
determining the type of collision.

A. Assumptions

To predict the future trajectories of surrounding vehicles, a
kinematic bicycle model [45] is applied to the current state
of the vehicle. We assume that this current state is exactly
known and that the prediction model provides an accurate
representation of the movement of the vehicle. Even though the

presence of uncertainties may affect the resulting predictions,
characteristics of collision scenarios such as a short prediction
horizon and close proximity of vehicles to each other make
the application of a physics-based motion model for trajectory
prediction reasonable [46], [47]. The position, velocity and
heading angle of the vehicles at the time of prediction is
determined by the ego vehicle’s perception system. Furthermore,
this study is performed in the absence of large time delays, e.g.,
sensor or actuator delays. The evaluated scenarios are junctions
and are encoded in the vehicle’s system beforehand. It is also
assumed that the ego vehicle is fully automated, but other
vehicles can be manual or with lower levels of automation. No
vehicle-to-vehicle communication is present.

B. Trajectory Selection Cost Function

The overall goal of the cost function prior to an imminent
unavoidable collision is to minimize post-impact consequences
in terms of injury severity for occupants. The cost function
that defines the criteria for trajectory selection is formulated
as follows:

J =W1 × Vreln(tc)︸ ︷︷ ︸
J0

+F (Pn(tc)), (2)

where tc is the instant of time that a collision between the ego
vehicle and another vehicle is determined. Vreln is the relative
velocity between the ego vehicle and the other vehicle(defined
in Eq. (C.1) in Appendix C), and subscript n refers to the nth

trajectory of the ego vehicle in the library. The term F (Pn(tc))
outputs the cost based on the impact location, and Pn(tc) is
an abstract term that represents the calculations performed to
determine the impacted location at the time of tc. The cost
function F (Pn(tc)) is derived based on ORFS values that are
presented in Table I and the analysis of Fig. (1). The side
impact location with the highest ORFS is assigned the highest
cost value, and the side impact location with the lowest ORFS
is assigned the lowest cost value. We assign values from 1-12 to
F (Pn(tc)) as presented in Eq. (3); these are merely categorical.

F (P (tc)) =



12 front and passenger compartment (Y0)

11 all of passenger compartment (P0)

10 distributed across entire side (D0)

9 rear and passenger compartment (Z0)

8 rear compartment and rear seat (Z1)

7 front compartment (F0)

6 front compartment and front seat (Y1)

5 rear compartment (B0)

4 passenger compartment-front seat (P1)

3 passenger compartment-rear seat (P2)

2 front to front collision

1 front to rear collision

(3)

Since our aim is to investigate the effect of the impact
location on injury severity, we consider this collision severity
factor as the dominant one in the cost function. To further
reduce the collision severity, the velocity term Vrel is added
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to the cost function. This term is multiplied by a weighting
factor of W1 leading to the value of J0 being less than 1.
With this approach, a trajectory with a lower cost of impact
location always has priority over a trajectory with a higher cost
of impact location. Moreover, for trajectories with the same
impact location, a trajectory with lower Vrel has priority over
a trajectory with a higher Vrel.

C. Collision Detection

Collision detection at each time step is performed through
the concept of robotic occupancy [48]. The surrounding
environment of the ego vehicle is divided into free and occupied
spaces and is represented as discrete grids. At each time step
all cells overlapped by the rectangle that approximates the
position of the other vehicle are defined as occupied. The area
outside the road is also defined as occupied. A collision is
determined if any points on the rectangle that represents the
body of the ego vehicle belong to occupied spaces. These
points are determined by calculating the vertices of the ego
vehicle rectangle and dividing the space between each pair of
points into a set of points.

D. Type of Collision

To calculate the cost of collision according to Eq. (3), we
propose a method to determine the impact location in a collision
between two arbitrary vehicles. Our approach starts by dividing
the rectangle that represents the body of the impacted vehicle
into ten polygons and labeling them from 1 to 10 as shown
in Fig. (5). Polygons 10 and 5 represent the front and rear
of the vehicle, respectively. The right and left sides of the
vehicle are each divided into four polygons (1-4 and 6-9).
Furthermore, polygons labeled as 1 and 9 are associated with
F0 impact location, 2 and 8 with P1, 3 and 7 with P2, and
4 and 6 with B0. An overlapping impact location is derived
from a combination of polygons. For instance, Polygons 2 and
3 together construct a P0 collision location.

Then, we calculate a set of points on the rectangle that
represents the body of the impact vehicle. This calculation is
performed similarly to the method discussed in Section VI.B.
The collision location is thus determined by identifying the
polygon or polygons of the impacted vehicle to which these
points belong. Therefore, by identifying the polygon number,
the collision location is determined and a cost is allocated
based on Eq. (3). This is further illustrated through a collision
between the ego vehicle (impact vehicle) and another vehicle
(impacted vehicle) in Fig. (6). In this example, points (shown
with black markers) on the rectangle of the ego vehicle (red)
belong to Polygon 8 of the other vehicle (blue). Thus, the
collision location is the front seat (P1) of the other vehicle,
and a cost is allocated according to Eq. (3).

Furthermore, since the severity is determined by the collision
location on the vehicle that is impacted, it is required to
determine which one of the two vehicles is the impacted
one. Consequently, in order to identify the impacted vehicle
and location the rectangle of each vehicle is divided into ten
polygons and sets of points are calculated for both vehicles.

This is followed by defining Polygon 10, i.e., front of vehicle,
as the impact polygon. If any points on the body of the other
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Fig. 5. Vehicle body that is divided into ten polygons.
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Fig. 6. Example of P1 side collision between the ego vehicle (red) and the
other vehicle (blue).

vehicle belong to Polygon 10 of the ego vehicle, then the front
of the ego vehicle is involved in the collision, i.e., the ego
vehicle impacts the other vehicle. We define this as a primary
type of collision. Similarly, if any points on the ego vehicle
belong to Polygon 10 of the other vehicle, then the front of the
other vehicle is involved in the collision, i.e., the ego vehicle
is impacted. We call this a secondary type of collision. If only
Polygon 10 of both vehicles intersect with each other, then
the collision is considered as a front-to-front collision with the
associated cost value as per Eq. (3).

In a primary type of collision, the polygon number of
the other vehicle determines the collision location and the
associated cost. On the other hand, in a secondary type of
collision, the impacted polygon on the ego vehicle determines
the collision location and cost. For instance, in Fig. (6), Polygon
10 (front) of the ego vehicle is involved in the collision, and
the type of collision is primary; Polygon 8 of the other vehicle
is the collision location and determines the collision cost.

VII. RESULTS

To demonstrate that our method is able to minimize collision
severity, two scenarios are simulated and analyzed. The first
scenario is a T-junction and involves two vehicles (ego and
another vehicle). However, as the number of interacting traffic
agents increases, risk estimation, in terms of which type of
collision is more severe, and decision-making, in terms of
which trajectory to follow, become more complex. Therefore,
the second scenario presents a case involving multiple vehicles.

A. Two-Vehicle Scenario

The scenario involves an ego vehicle, another passenger car
and a T-shaped junction. A general description of the scenario
is presented in Fig. (7). The direction of movement for the
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Fig. 7. General description of the scenario and positions of the ego vehicle
(red) and the other vehicle (blue) at t = 0s. Initial velocity of both vehicles
is v = 15m/s in arrow direction.

Fig. 8. Collisions between different trajectories of the ego vehicle and the
other vehicle at different time steps.

Table II
COLLISION COST

Predicted Collision Time Trajectory No. Cost
0.911 (s) 159-162 4 ≤ cost < 5
0.911 (s) 163-165 11 ≤ cost < 12
0.911 (s) 166 cost ≥ 12
0.940 (s) 156 7 ≤ cost < 8
0.940 (s) 157-158 6 ≤ cost < 7
0.970 (s) 155 7 ≤ cost < 8

ego vehicle and the other vehicle is from left to right and
top to bottom, respectively. The velocity of both vehicles (ego
and other) is 15m/s at t = 0, and the trajectory of the other
vehicle is predicted for approximately the next 1s. A subset of
trajectories for the ego vehicle is selected from the trajectory
library based on its current velocity. The prediction horizon is
divided into time steps, and at each time step a collision check
is performed as outlined in Section VI.B.

The predicted collisions between different trajectories of
the ego vehicle and the other vehicle at various time steps
are presented in Fig. (8). The initial collision is determined at
tc = 0.911s, where a subset of trajectories of the ego vehicle,
namely, trajectory numbers 159− 166, collide with the other
vehicle. Colliding trajectories at this time step are presented
with magenta boxes for both vehicles. One of the trajectories
at this time step, trajectory number 160, is shown in more
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Fig. 9. Optimal trajectory of the ego vehicle (red) leading to minimum
collision severity and the path of the other vehicle (blue) until tc = 0.911s.

detail in the top right corner of Fig. (8). As we can see in this
graph and for this trajectory, points from Polygon 10 of the
ego vehicle are inside Polygon 8 of the other vehicle. This
indicates that the ego vehicle strikes the other vehicle, and the
front seat of the passenger compartment (P1) is the collision
location on the other vehicle. Thus, the associated cost for this
trajectory before considering the effects of velocity is 4 (see
Eq. (3)). The trajectories leading to collisions at the current
time step are then removed from the library in order to not be
considered as the cause of collision in subsequent time steps.
They are instead added to the collision set with their associated
costs. The collision cost for all trajectories at this time step is
presented in Table II.

The next time step (predicted collision) is tc = 0.940s, and
the intersecting rectangles are shown in black in Fig. (8). The
colliding trajectories at this time step are labeled as 156− 158.
Collisions at this time step are also determined as primary,
and the associated cost is presented in Table (II). For instance,
trajectory 157 has a cost value of 6, meaning that both the
front compartment (F0) and front seat (P1) of the other vehicle
are impacted by the front of the ego vehicle, and the collision
location is Y1. This location was determined by identifying a
set of points on Polygon 10 of the ego vehicle that belonged
to both Polygon 8 and 9 of the other vehicle.

Finally, at tc = 0.970s, the last remaining trajectory in the
set leads to a side impact, where the impact location is the
front compartment (F0). The colliding rectangles at this time
step are presented in cyan. All trajectories and their associated
costs at various time steps are summarized in Table II.

As presented in Table II, the lowest cost trajectories are
159−162 and are associated with the P1 impact location. Since
these trajectories have the same impact location, the trajectory
with the lowest relative velocity is chosen for execution. In
cases where several trajectories have the same cost, the first
one in the set is selected for the ego vehicle to follow. In this
example scenario, trajectory 159 has the lowest cost (4.114).
Since no collision-free trajectory exists in the selected subset,
it is optimal to follow this trajectory in terms of minimizing
the injury severity of vehicle passengers.
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Fig. 10. State variables and control inputs of the ego vehicle to follow the
optimal trajectory (trajectory 159) until just before the collision (tc = 0.911s).

The trajectory of the ego vehicle with the minimum cost,
as well as the path of the other vehicle, is presented in Fig.
(9) from t = 0 until the time of collision. The vehicle boxes
at the point of collision are also enlarged in this figure. As
shown, Polygon 10 of the ego vehicle intersects with Polygon
8 of the other vehicle. Therefore, this collision is categorized
as P1 with a cost of 4.

The state variables including heading and steering angle,
yaw rate, longitudinal and lateral velocity and longitudinal
and lateral tire forces for the selected optimal trajectory
are presented in Fig. (10). For the ego vehicle to follow
the minimum collision severity trajectory, the control inputs
(steering angle rate and rate of change of braking) until the
collision time are also as demonstrated in Fig. (10).

B. Multi-Vehicle Scenario

The collision severity minimization motion planning ap-
proach can be extended to handle scenarios involving more
than one vehicle in the surrounding environment of the ego
vehicle. An example scenario is an intersection with the ego
vehicle and two other vehicles (I and II). The velocity of
ego vehicle at t = 0 is v = 20m/s and for other vehicles is
v = 15m/s. This scenario at the time of collision is shown
in Fig. (11) and Fig. (12). These figures present collisions at
different time steps in a single scenario, but for the sake of
visibility, the former shows collisions with one vehicle (I) and
the latter collisions with another (II). All collisions with vehicle
(I) are determined as the secondary type since the ego vehicle
is impacted by the other vehicle (I). On the other hand, all
collisions with vehicle (II) are of the primary type (see Section
VI.D). The first collision is determined at tc = 0.853s between
the ego vehicle and the other vehicle (I), and the colliding
trajectories are presented with black boxes in Fig. (11). The
collision at this time for trajectory 291 is presented in more
detail in the top right corner of this figure. As we can see, two
polygons (2 and 3) of the ego vehicle are impacted, meaning
that the collision location is P0; furthermore, and according to
Eq. (3), the cost is 11.

Fig. 11. Collisions of the ego vehicle with the other vehicle (I) at different
time steps.

Fig. 12. Collisions of the ego vehicle with the other vehicle (II) at different
time steps.

The first collision between the ego vehicle and the other
vehicle (II) is predicted at tc = 0.906s. One of the colliding
trajectories (293) is shown in more detail in the top right corner
of this figure. For this trajectory, the rear compartment B0 of
vehicle (II) is impacted by the ego vehicle, and the cost is 5.
Trajectory 304 of the ego vehicle is also involved in a collision
at this time step but with vehicle (I). The colliding boxes are
shown in magenta in Fig. (11) and Fig. (12).

From tc = 0.906s and onward, the ego vehicle is involved
in collisions with both vehicles (I and II). For instance, at
tc = 0.933s, two of the trajectories of the ego vehicle (302-
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Fig. 13. Optimal trajectory (297) of the ego vehicle (red) leading to a collision
with minimum severity with the other vehicle (II) (magenta). The path of the
other vehicle (I) (blue) is also shown.
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Fig. 14. State variables and control inputs of the ego vehicle to follow the
optimal trajectory (297) until just before the collision (tc = 0.986s).

303) are involved in a collision with vehicle (I) and the other
two (294-295) with vehicle (II). These collisions are presented
with red boxes in Fig. (11) and Fig. (12).

The colliding trajectories from the set and their associated
costs are summarized in Table (III) and Table (IV). The
trajectory with the lowest collision severity is determined
exactly as in scenarios involving only one other vehicle and is
presented in Fig. (13). This trajectory is labeled as 297 and
leads to a P2 collision with the other vehicle (II) at tc = 0.986s.
The state and control inputs for the chosen trajectory, leading
to the minimum collision severity, are presented in Fig. (14).

VIII. DISCUSSION

The scenarios presented in the results successfully demon-
strate the application of collision severity minimization in
motion planning for unavoidable collision situations. Since

Table III
COLLISION COST FOR COLLISIONS OF EGO VEHICLE AND VEHICLE (I)

Predicted Collision Time (s) Trajectory No. Cost
0.853 291 and 308 11 ≤ cost < 12
0.879 305 5 ≤ cost < 6
0.879 306-307 8 ≤ cost < 9
0.906 304 5 ≤ cost < 6
0.933 302-303 5 ≤ cost < 6
0.959 301 5 ≤ cost < 6
0.986 300 5 ≤ cost < 6
1.039 299 5 ≤ cost < 6

Table IV
COLLISION COST FOR COLLISIONS OF EGO VEHICLE AND VEHICLE (II)

Predicted Collision Time (s) Trajectory No. Cost
0.906 292-293 5 ≤ cost < 6
0.933 294 8 ≤ cost < 9
0.933 295 3 ≤ cost < 4
0.959 296 3 ≤ cost < 4
0.986 297 3 ≤ cost < 4
1.039 298 5 ≤ cost < 6

approximately 43% of the accidents in Europe occur at
intersections [49], the demonstrated method is thus promising in
many collision situations involving road vehicles. The presented
method can also be extended to more complex scenarios.
However, the limiting factor, especially in the latter case, is
most likely not the method but the data that is driving the
choice of impact location.

A relatively straightforward decision between side locations,
as shown in the results, is supported both by existing data
and logic. However, there is a shortage of data on the severity
of collisions related to the heterogeneity of vehicle design.
This lack of data could make it difficult to choose between
trajectories in scenarios where more than two vehicles are
involved in a collision (see Section VII.B). For example, in
the scenario of Fig. (13), the mass and height of the involved
vehicles could affect the choice of the optimal impact location.
Such aspects can easily be included in the suggested method
by using expert models such as [10], but this risks aggravating
problems with model complexity. Indeed, the heterogeneity of
vehicle design will thus make it imperative for the suggested
method that future vehicles are fitted with sensors that allow for
post-collision statistical analysis. Fortunately, highly automated
vehicles will most likely not only be required to generate
such data, but vehicle manufacturers will also be required to
share this data across the automotive industry. Therefore, the
proposed method is in line with the evolution of the automotive
industry.

There are other similar opportunities for improving the
suggested method. For the proposed implementation, the X
and Y coordinates of the goal positions have a distance of
0.5m. A finer grid of goal positions increases the number of
trajectories in the set. Consequently, a lower cost trajectory
might be identified in certain scenarios. However, there is a
trade-off between identifying the lowest cost trajectory and the
number of trajectories that can be checked before an imminent
collision. Thus, a better trajectory might still not be chosen
from the trajectory library, as it may not be possible to check
all trajectories in time to act appropriately before a collision
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occurs.
The post-impact behavior of the vehicles has not yet been

explored. What occurs after the collision may influence the
final cost and thus the minimum cost trajectory. For example,
in the scenario of Fig. (13) depending on the positions and
velocities of the ego vehicle and other vehicle (II) after the
initial impact, a secondary collision may occur between any
of the vehicles involved in the scenario.

Similarly, several vehicles can be involved in a simultaneous
collision. This situation can be handled by the suggested
approach by considering each collision in isolation and al-
locating a collision cost according to a one-to-one vehicle
collision. However, it is only an assumption that the presented
data is comprehensive enough to build relationships and draw
conclusions in this case. Therefore, addressing this type of
collision might be better postponed to when more data on
simultaneous collisions become available.

IX. CONCLUSION AND FUTURE WORK

We proposed a motion planning method that specifically
addresses the minimization of collision severity in unavoidable
collision situations through a trajectory library containing
reference trajectories. The results of the analysis of real accident
data on impact location and injury severity allowed us to build
realistic criteria to rank trajectories from the most severe to
the least severe. The concept of a trajectory library allowed us
to incorporate a nonlinear vehicle and tire model to stay closer
to the original problem, as defined in the problem statement.
Simulations verified that the proposed method is able to mitigate
the severity of a collision in different scenarios.

The suggested method shows a clear promise in regard
to extending the cost function by integrating more collision
factors as well as including the post-impact motion of vehicles
in decision-making. Potential extensions of our method could
consider uncertainty in problem formulation, both in terms
of trajectory prediction and driver intention. The extensions
of the method could also incorporate what happens after the
first impact in terms of vehicles final positions and explore
the possibility of secondary collisions or collisions with other
road users.

APPENDIX A
ODDS RATIO CALCULATIONS

We define the occurrence of fatal and severe injuries as the
event of interest, and observations of minor injuries equivalent
to the event of interest not occurring. To estimate the risk of
fatal and severe injuries for a specific impact location, e.g., P0

in Table A.1, we apply the formula in Eq. (A.1), where a is
the sum of fatal and severe injuries for P0 and b represents the
minor ones. Similarly, c is the sum of all observed fatal and
severe injuries for all other impact locations excluding P0 and
d is the sum of all minor injuries for all other impact locations.

OR =
a/b

c/d
(A.1)

The odds of being seriously injured (fatal and severe) for
one impact location divided by the odds of being seriously
injured for all other locations is the metric for risk estimation.

Table A.1
ODDS RATIO

Collision location Fatal and severe Minor
P0 a b

All other locations c d

APPENDIX B
VEHICLE AND TIRE MODELING

The motion of the ego vehicle is modeled as a dynamic
bicycle model. Braking and steering are controlled through
the rate of change of longitudinal tire forces and the rate of
change of the steering angle. The model is sufficient for highly
dynamic scenarios. The system dynamics are described as
follows:

Ẋ = vxcos(ψ)− vysin(ψ),
Ẏ = vxsin(ψ) + vycos(ψ),

ψ̇ = r,

v̇x = 1
m (Fxf

cos(δ) + Fxr
− Fyf sin(δ)) + ψ̇vy,

v̇y = 1
m (Fxf

sin(δ) + Fyr + Fyf cos(δ))− ψ̇vx,
ṙ = 1

Iz
(LfFxf

sin(δ) + LfFyf cos(δ))− LrFyr ),
δ̇ = u1,

Ḟxf
= u2,

Ḟxr
= u3,

(B.1)

where X and Y are the position of the center of gravity of
the vehicle in global coordinates, ψ is the heading angle of
the vehicle body, and vx, vy and r are the longitudinal, lateral,
and rotational velocity of the vehicle body, respectively. The
steering angle is denoted by δ, and longitudinal and lateral
forces on the front and rear axles are Fxf

and Fxr , respectively.
The control inputs are as follows: rate of change of steering
angle (u1), and rate of change of longitudinal tire forces for
both front (u2) and rear (u3) axles. The vehicle parameters
and their values are defined in Table B.1.

A simplified version of the nonlinear Pacejka Magic Formula
tire model is used in this paper based on the work done by
[50]. The lateral tire forces on the front and rear axles are
according to Eq. (B.2). In the following equations, f and r
indices refer to the front and rear wheels, respectively.

Fyf = −sin(tan−1(Cfαf ))
√

(µFzf )
2 − F 2

xf
,

Fyr = −sin(tan−1(Crαr))
√
(µFzr )

2 − F 2
xr
.

(B.2)

In Eq. (B.2), C represents the wheel tire stiffness. The slip
angles for the front and rear axles are defined as

αf = tan−1
(
vy+Lf ψ̇
|vx|

)
− δ,

αr = tan−1
(
vy−Lrψ̇
|vx|

)
.

(B.3)

The load transfer between axles is also considered, and the
normal load on the front and rear axles are calculated as
follows:

Fzf = (mgLr − hCGmax)/Lf + Lr,

Fzr = (mgLf + hCGmax)/Lf + Lr,
(B.4)
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Table B.1
VEHICLE PARAMETERS OF THE EGO VEHICLE

Parameter Description Value
m Mass of ego vehicle 2150 kg
Iz Moment of Inertia 3075kgm2

Lf Distance between front axle and center of gravity 1.4m
Lr Distance between rear axle and center of gravity 1.45m
h Center of gravity to ground height 0.738m
Cf Front wheel tire stiffness 22
Cr Rear wheel tire stiffness 22
µ Friction coefficient 0.763

where acceleration ax is defined according to Eq. (B.5).

ax = (Fxf
+ Fxr

)/m (B.5)

APPENDIX C
RELATIVE VELOCITY

The relative velocity (Vrel) from Eq. (2) is calculated as
shown in Eq. (C.1), where the subscripts e and o refer to the
ego vehicle and the other vehicle, respectively. The heading
angle and velocity of the other vehicle are denoted as φ and
vo, respectively. X and Y represent the global directions and
V is the velocity in these directions. Definitions of variables
for the ego vehicle were previously defined in Appendix B.

VeX = vxcos(ψ)− vysin(ψ), VoX = vocos(φ),

VeY = vxsin(ψ) + vycos(ψ), VoY = vosin(φ),

VrelX = VoX − VeX , VrelY = VoY − VeY ,

Vrel =
√

(VrelX )2 + (VrelY )2

(C.1)
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